Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases.
نویسندگان
چکیده
The Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are overexpressed and/or activated in a wide variety of human malignancies. Vascular endothelial growth factor (VEGF) receptors are expressed on the surface of vascular endothelial cells and cooperate with Met to induce tumor invasion and vascularization. EXEL-2880 (XL880, GSK1363089) is a small-molecule kinase inhibitor that targets members of the HGF and VEGF receptor tyrosine kinase families, with additional inhibitory activity toward KIT, Flt-3, platelet-derived growth factor receptor beta, and Tie-2. Binding of EXEL-2880 to Met and VEGF receptor 2 (KDR) is characterized by a very slow off-rate, consistent with X-ray crystallographic data showing that the inhibitor is deeply bound in the Met kinase active site cleft. EXEL-2880 inhibits cellular HGF-induced Met phosphorylation and VEGF-induced extracellular signal-regulated kinase phosphorylation and prevents both HGF-induced responses of tumor cells and HGF/VEGF-induced responses of endothelial cells. In addition, EXEL-2880 prevents anchorage-independent proliferation of tumor cells under both normoxic and hypoxic conditions. In vivo, these effects produce significant dose-dependent inhibition of tumor burden in an experimental model of lung metastasis. Collectively, these data indicate that EXEL-2880 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of invasion and angiogenesis mediated by HGF and VEGF receptors.
منابع مشابه
VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer.
Angiogenesis inhibitors that block VEGF receptor (VEGFR) signaling slow the growth of many types of tumors, but eventually the disease progresses. Multiple strategies are being explored to improve efficacy by concurrent inhibition of other functionally relevant receptor tyrosine kinases (RTK). XL880 (foretinib, GSK1363089) and XL184 (cabozantinib) are small-molecule inhibitors that potently blo...
متن کاملGrowth and Metastasis in Mice Factor, Is an Angiogenesis Inhibitor that Suppresses Tumor HGF/NK4, a Four-Kringle Antagonist of Hepatocyte Growth
We reported that NK4, composed of the N-terminal hairpin and subsequent four kringle domains of hepatocyte growth factor (HGF), acts as the competitive antagonist for HGF. We now provide the first evidence that NK4 inhibits tumor growth and metastasis as an angiogenesis inhibitor as well as an HGF antagonist. Administration of NK4 suppressed primary tumor growth and lung metastasis of Lewis lun...
متن کاملHGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice.
We reported that NK4, composed of the N-terminal hairpin and subsequent four kringle domains of hepatocyte growth factor (HGF), acts as the competitive antagonist for HGF. We now provide the first evidence that NK4 inhibits tumor growth and metastasis as an angiogenesis inhibitor as well as an HGF antagonist. Administration of NK4 suppressed primary tumor growth and lung metastasis of Lewis lun...
متن کاملCabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.
The signaling pathway of the receptor tyrosine kinase MET and its ligand hepatocyte growth factor (HGF) is important for cell growth, survival, and motility and is functionally linked to the signaling pathway of VEGF, which is widely recognized as a key effector in angiogenesis and cancer progression. Dysregulation of the MET/VEGF axis is found in a number of human malignancies and has been ass...
متن کاملA novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities.
The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 20 شماره
صفحات -
تاریخ انتشار 2009